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Propolis has been shown to modulate the angiogenesis in both in vitro and in vivo models. Thus, we aimed to evaluate the
antiangiogenic properties of an ethanolic extract of Chilean propolis (EEP) and Pinocembrin (Pn). Migration, formation of
capillary-like structures of endothelial cells, and sprouting from rat aortic rings were used to assess the antiangiogenic properties
of EEP or Pn. In addition, microRNAs and VEGFA mRNA expression were studied by gPCR. ERK1/2 phosphorylation and HIFlex
stabilization were assessed by western blot. EEP or Pn attenuated the migration, the capillary-like tube formation, and the sprouting
in the in vitro assays. In addition, the activation of HIFla and ERK1/2 and the VEGFA mRNA expression was significantly inhibited
in a dose-dependent manner. In summary, these results suggest that HIFlee and ERK1/2 phosphorylation could be involved in the

antiangiogenic effect of Chilean propolis, but more studies are needed to corroborate these findings.

1. Introduction

Propolis is a polyphenol-rich resinous substance produced by
honeybees (Apis mellifera) from exudates of trees and plants
which they use to seal holes in the beehive [1]. Its composition
is very complex and varies according to climate, flora, and
phenology of the geographical area where it was collected
[2]. It has been shown that extract of propolis exhibits several
biological activities such as antibacterial [3], antifungal [4],
anti-inflammatory [5], antioxidant [6], anticancer [7], and
antiatherogenic [8] properties.

Compelling evidence has shown that polyphenol-en-
riched fraction from propolis can modulate angiogenesis in
both in vitro and in vivo models [8-13]. Angiogenesis is
the physiological process through which new blood vessels
emerge from preexisting vessels [14]. During postnatal and
adult life, angiogenesis is the only mechanism that allows the
formation of new blood vessels and is key in wound repair,
female reproductive cycle, and exercising muscle [15]. By

contrast, imbalance between activating and inhibitory factors
of this process leads to pathological angiogenesis, persistent
condition involved in tumor growth and progression [16],
chronic inflammatory diseases such as Crohn’s disease [17],
cartilage destruction in rheumatoid arthritis [18], blindness
in diabetes [19], growth of atherosclerotic plaques [20], and
many other pathological processes.

The molecular mechanisms involved in the antiangio-
genic effect of propolis are poorly understood. Furthermore,
the demonstrated mechanisms are varied and likely depend
on the particular composition of the extract used; so pre-
viously reported results cannot necessarily be extrapolated
to other extracts. Moreover, not all studies have clarified
whether extract concentrations used do not produce a cyto-
toxic effect. In this regard, the possible in vitro antiangiogenic
effect of the Chilean propolis extracts has not been studied.

In the present work, the possible in vitro antiangiogenic
activity of both ethanolic extracts of Chilean propolis (EEP)
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and Pinocembrin (Pn), one of its main constituents, was
evaluated, at no toxic and no apoptotic concentrations.

2. Materials and Methods

2.1. Preparation of Ethanolic Extract of Chilean Propolis.
Crude brown propolis was obtained from a mountainous
area (latitude —38° 58' 40.46", longitude ~72° 1 15.73") near
Cunco city, La Araucania, Chile. The EEP was performed as
previously described [8]. Briefly, crude propolis was mixed
with ethanol 80% ina1: 3 w/v proportion in an amber colored
bottle and then incubated for 30 min at 60°C under constant
mixing. Then, the mixture was filtrated on a Whatman No.
1 filter paper in order to separate the ethanolic extract from
crude propolis residues. For one night, the extract was left at
4°C, in order to promote the precipitation of waxes and other
poorly soluble waste, and then centrifuged. Subsequently,
the EEP was lyophilized and reconstituted in a 2:1 w/v
proportion with DMSO. Finally, the EEP was quantified by
Folin-Ciocalteu method and diluted at 50.000 ug of gallic acid
equivalent/mL (onwards expressed as pg/mL) with DMSO
for subsequent experiments.

2.2. Cell Culture. Human umbilical vein endothelial cells
(HUVECs) were maintained in growth medium RPMI 1640
(GIBCO, Germany) at 37°C in a humidified atmosphere of
5% CO, in air. The medium was supplemented with 10% heat
inactivated fetal bovine serum (FBS), 100 IU/mL penicillin,
and 100 yg/mL streptomycin. Before each experiment the
supplemented growth medium was replaced with medium
supplemented with 1% FBS and incubated for 12 h.

2.3. MTT Viability Assay. The MTT reduction assay was
done in 96-well plates at a density of 5 x 10° HUVECs per
well after treatment of HUVECs with different concentration
of EEP or Pn. MTT 5mg/mL in PBS was added to the
culture medium at a final concentration of 0.5 mg/mL. After
4h of incubation the reduced formazan was solubilized
with DMSO and the absorbance measured at 570 nm in a
microplate reader (Synergy MX, Biotek Instruments, USA).

2.4. Annexin V-FITC/PI Staining Experiment. Apoptotic cells
were measured with an Annexin V-FITC Apoptosis Detec-
tion Kit (Sigma-Aldrich, USA) according to the manufac-
turer’s protocol. Briefly, confluent HUVECs monolayers were
treated with different concentration of EEP or Pn for 24h
at 37°C. Cells were then harvested and resuspended in the
1x-binding buffer. Cells were stained with 10 L. Annexin V-
FITC and 5 uL propidium iodide (PI) for 15min at room
temperature in the dark. Analysis was performed by flow
cytometry (FACS Canto, BD Biosciences, CA, USA) to
identify the subpopulations of the apoptotic cells.

2.5. Cell Cycle Analysis. The ratio of cells in the GO/GL, §,
and G2/M phases of cell cycle was determined by their DNA
content. In 6-well plates cells at concentration of 2 x 10°
cells per well were treated with various concentrations of
EEP or Pn for 24 h. Then, cells were harvested, transferred
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to cytometry tube, and centrifuged. Then, 200 uL of lysis
buffer (0.1% sodium citrate, 0.1% Triton), 20 uL of RNAse A
(Invitrogen, USA), and 2 yuL (1mg/mL) of propidium iodide
(Sigma-Aldrich, Steinheim, Germany) were added and were
incubated for 30 min at 37°C and analyzed by flow cytometry.

2.6. Migration Assay. HUVECs migration was analyzed
using an in vitro scratch wound assay as previously described
[21]. In brief, confluent HUVECs monolayers were scratched
with a sterile pipette tip, rinsed, and incubated for 8 hours
with RPMI 1% FBS. The wounding area was photographed
every 2 hours, up to a total of 8 hours. The TScratch software
[22] was used to determine the extent of migration by
quantifying uninvaded area in 3 distinct microscopic fields
representative of each culture plate. Each experiment was
performed in triplicate and repeated 3 times. The relative
migration was expressed as

(M) % 100 )
WA, ’

where WA, = wound area at time 0; UA,, = uninvaded area
at x time.

2.7. Tube Formation Assay. The capillary-like formation assay
was performed as described previously [23], with slight
modifications. Matrigel (BD Biosciences, CA, USA) was
thawed at 4°C overnight. 50 uL of Matrigel was added to
each well of the 96-well culture plates and was allowed
to polymerize at 37°C for 30 min. The HUVECs, to be
tested for tube formation, were detached from the tissue
culture plates, washed, resuspended in RPMI 1640 medium
containing 1% FBS (8 x10° cells/well), and then added to
the Matrigel-coated wells with various concentrations of EEP
or Pn in the presence of VEGFA 10 ug/mL. The plates were
incubated at 37°C for 6 h in 5% CO,. After incubation, the
capillary-like tube formation of each well in the culture
plates was photographed with a Nikon light microscope.
Each experiment was performed with 2 replicates each time
and repeated 3 times. The angiogenesis score was calculated
considering the number of sprouting cells, the number of
connected cells, number of polygons, and complexity of the
formed mesh according to the formula described by Aranda
and Owen [24].

2.8. Aortic Ring Assay. Dorsal aorta from a 2-month-old male
Wistar rat was taken out in a sterile manner and rinsed in
ice-cold PBS. It was then cut into ~l mm long pieces using
surgical blade. Each ring was embedded in 3-dimensional rat
collagen I gels (2 mg/mL) in 48-well plate and overlaid with
1.2 mL MCDBI31 medium containing VEGF 10 ug/mL, with
or without 15 ug/mL of EEP or Pn. On day 6, the rings were
photographed and capillary-like structures were quantified.
Each experiment was performed with at least 5 samples each
time and repeated 3 times.

2.9. ERKI/2 Phosphorylation and HIFle Stabilization. The
western blot analysis was performed as previously described
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[25]. Briefly, cells for the study of HIFl factor were treated
with different concentrations of EEP and Pn and incubated
for 4h in a hypoxia chamber (air replaced by nitrogen
gas), reaching concentrations below 1% oxygen. Meanwhile,
the cells used for the study of ERK1/2 phosphorylation
were incubated for 15min in standard conditions from the
application of VEFG 10 ng/mL stimulus. Treated cells were
washed with ice-cold PBS, lysed with RIPA buffer (Sigma-
Aldrich, Steinheim, Germany), scraped off, and sonicated fol-
lowed by centrifugation (15,000 xg, 15 min). Protein content
was quantified and 100 ug of total protein was loaded on
10% SDS-polyacrylamide gels and blotted onto nitrocellulose
membranes. Nonspecific binding was blocked with 5% (w:v)
defatted milk powder in TTBS for 1h followed by antibodies
incubation with HIFle or ERK1/2 and pERK1/2 (1:1000 in
1% TTBS) overnight at 4°C. Blots were then incubated with
goat anti-mouse antibodies conjugated to HRP (1:2000 in
1% TTBS) for 1h followed by chemiluminescence detection.
Band intensities were quantified by using Image]J 1.48 soft-
ware (NIH, USA).

2.10. mRNA and miR Expression. HUVECs cells (4 x 10*
cells/well) seeded in 12-well plates were incubated in media
containing 10 ug/mL of EEP or Pn for 24 hours. Cells
were then lysed and the total RNA was isolated by using
TRIreagent RNA isolation reagent (Ambion, USA) according
to the manufacturer’s instructions. Total RNA enriched with
miRNAs was isolated by using or mirVana miRNA isolation
kit (Life Technologies, USA). RNA was reverse-transcribed
by High Capacity RNA to ¢cDNA master mix (Life Tech-
nologies, USA). For microRNAs reverse transcription was
used stem loop primer provided by the microRNA assay’s
manufacturer (Life Technologies, USA). All real-time PCR
were performed using Power SyBR Green master mix (Life
Technologies, USA) and analyzed with QPCR application
[26].

2.11. Statistical Analysis. All the experiments were repeated at
least three times. The results were expressed as mean + S.D.,
and the data were analyzed using one-way ANOVA followed
by Dunnett’s test or Student’s ¢-test using Sigma Plot (Sigma
Plot for Windows, version 10.0, USA) to determine any
significant differences. P < 0.05 was considered statistically
significant.

3. Results

3.1. Cell Viability, Apoptosis Detection, and Cell Cycle Assays.
In order to evaluate the proliferating potential and the cell
viability of HUVECs exposed to different concentrations of
EEP (0-100 pg/mL) or Pn (0-100 pg/mL), the MTT reduction
assay and the Annexin V-FITC/PI staining assay were carried
out. As shown in Figure 1(a), the treatment with EEP or Pn
up to 15 ug/mL did not significantly decrease the cell prolif-
eration assessed with the MTT assay. In addition, treatment
with EEP up to 15 yg/mL or Pn up to 25 ug/mL did not induce
apoptosis or necrosis Annexin V-FITC/PI (Figure 1(b)). On
the other hand, concentration up to 25 ug/mL of EEP or Pn

did not induce arrest of the cell cycle (Figures 1(c) and 1(d)).
In order to work with no toxic and no apoptotic concentra-
tions, based on this result, we selected concentrations up to
15 ug/mL of EEP or Pn for subsequent experiments.

3.2. Endothelial Cells Migration. To evaluate possible inhib-
itory effect of EEP or Pn on HUVECs migration the scratch
wound assay was performed. As shown in Figure 2(b),
treatment with 10 yg/mL (-39.7%, P < 0.01) or 15 ug/mL
(—=54.9%, P < 0.01) of EEP significantly reduced the HUVECs
migration at 8h in a dose-dependent manner (Figure 2(d))
compared to HUVECs treated only with VEGE. By contrast,
Pn treatment showed significant changes at different doses
(=50.0%, P < 0.01 with 15 ug/mL at 8 h); however, the effect
was not dose dependent (Figure 2(c)). Importantly, treat-
ment with vehicle did not modify the HUVECs migration
(Figure 1(a)).

3.3. Tube Formation Assay. The in vitro angiogenesis was
assessed by capillary-like tube formation assay on Matrigel.
Treatment with EEP and Pn had a moderate but significant
inhibitory effect on the angiogenesis score (Figure 3(b)) in
a dose-dependent manner. Notably, the major effects were
in the formation of closed rings of capillary-like structures,
an indicator of the ability of HUVECs to form networks
(Figure 3(a)).

3.4. Aortic Ring Assay. In order to evaluate the effect of
EEP or Pn on angiogenesis ex vivo the rat aortic ring assay
was carried out. At 15pug/mL both EEP (Figure 4(c)) and
Pn (Figure 4(d)) significantly diminished the microvessel
sprouting from aortic rings, when compared with control
group (Figure 4(a)). Vehicle did not affect microvessel sprout-
ing (Figure 4(b)).

3.5. ERK1/2 Phosphorylation and HIFl Stabilization. West-
ern blot analysis was carried out to evaluate the ERK1/2
phosphorylation and the HIFl« stabilization, two important
factors involved in the induction of angiogenesis. EEP, but
not Pn, was able to inhibit slightly the ERK1/2 activation
(Figure 5(a)). On the other hand, both EEP and Pn signifi-
cantly inhibited in a dose-dependent manner the activation
of HIFla.

3.6. VEGF mRNA and Angiogenesis-Related MicroRNAs
Expression. Finally, VEGF mRNA and microRNAs associ-
ated with angiogenesis in previous studies (miR-126, miR-
19b, miR-221, miR-222, miR-27b, and miR-17) were evalu-
ated by real-time PCR. Only EEP was able to reduce the
VEGF mRNA expression (Figure 5(b)). In addition, only
miR-19b was overexpressed in HUVECs treated with EEP
(Figure 5(c)).

4. Discussion

Angiogenesis is a highly regulated process, which involves
a complex cascade of events. However, the imbalance of
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FIGURE 1: (a) HUVECs viability by MTT assay. (b) Apoptosis/necrosis evaluation by Annexin/PI staining. (c, d) Flow cytometry analysis of
cell cycle phases for EEP and Pn treatments, respectively. The data were expressed as mean + standard deviation. *P < 0.05 in EEP treatment;
**P < 0.01 in EEP treatment; P < 0.05 in Pn treatment; ** P < 0.01 in Pn treatment. C: control; V: vehicle; Pn: Pinocembrin.

pro- and antiangiogenic factors is able to worsen many patho-
logical conditions like atherosclerosis or cancer. Accumu-
lating evidence has showed that polyphenols can modulate
this process [9, 11-13, 25, 27]. In this study, we reported
that ethanolic extracts of Chilean propolis and Pinocembrin,
one of its main constituents, were able to modulate in vitro
angiogenesis at no cytotoxic concentration, in part by modu-
lating HIFle stabilization and ERK1/2 phosphorylation, two
important factors involved in this process.

We showed that EEP or Pn could modulate in vitro
HUVECs migration, in vitro organization into capillary-
like structures, and ex vivo formation of new blood vessels.
Consistent with our results, previous reports showed a potent
inhibitory effect of the propolis extract on capillary-like
structures formation of HUVECs, reaching an inhibition
between 60% and 90% at 50 ug/mL [28, 29]. It is important
to note that many of these studies use higher concentration of

propolis extract and fail to clarify whether the in vitro effect
of propolis is not due to a cytotoxic effect. We showed that
concentration above 15 yg/mL of EEP or Pn decreased cell
viability, which does not differentiate between a functional
effect and a cytotoxic effect.

The inhibitory activity of EEP was more effective than
Pn. The suppressing effect of Pn on capillary-like structures
formation was weaker than EEP and the migration assay was
inconclusive. Phytochemicals, including polyphenols, exert
their function mainly by antioxidant or prooxidant activity
[30]. Pinocembrin has a lower total antioxidant capac-
ity and reduced free radical-scavenging activity compared
with other common polyphenols present in the propolis
[31]. Our ethanolic extract of propolis contains over thirty
compounds, highlighting Pinocembrin, Pinobanksin-3-O-
acetate, and caffeic acid isoprenyl ester [32]. It is possible that
because the EEP is a complex mixture the observed effect is
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FIGURE 2: Effect of different concentrations of EEP or Pn on the HUVECs migration at 8 h. (a) Comparison of HUVECs with and without
VEGF 10 ug/mL. (b) HUVECs treated with 1-15 ug/mL of EEP. (c) HUVECs treated with 1-15 ug/mL of Pn. (d) Migration in HUVECs treated
with 1-15 gg/mL of EEP at 8 h. White lines represent the initial wound. *P < 0.05; P < 0.01; P < 0.01 (10 yg/mL versus VEGF); °P < 0.01
(15 ug/mL versus VEGF); °P < 0.01 (10 yg/mL versus VEGF); *P < 0.01 (10 ug/mL versus VEGF). C: control; V: vehicle; Pn: Pinocembrin.

due to other compounds with highest antioxidant activity or
a synergy between multiple compounds.

In accordance with our results, previous studies have
showed that polyphenols of propolis can modulate HIFlow and
ERK1/2 in endothelial cells [25, 33]. HIFl« is a transcription
factor that responds to low concentrations of oxygen in the
cellular environment. Under hypoxic conditions, HIFl« is

stabilized and translocated to nucleus to induce angiogenic
factors, such as VEGFA, a major contributor to angiogenesis.
VEGFA/VEGFR2 signaling induces angiogenesis by cell pro-
liferation, survival, and migration in part through the acti-
vation of the mitogen-activated protein kinase/extracellular-
signal-regulated kinase-1/2 (ERK1/2) and phosphatidylinosi-
tol 3-kinase (PI3-K)/Akt signal transduction pathways [34].
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In line with this, we showed that EEP could inhibit the HIFl«
accumulation and the ERK1/2 phosphorylation in a dose-
dependent manner, which is related with the suppression of
VEGF mRNA and is consistent with the antiangiogenic effect
demonstrated in the functional assays.

Finally, we conducted a small microRNA screening that
has been associated with angiogenesis in previous studies.
Among them, only miR-19b was overexpressed in cells treated
with EEP. In silico and in vitro analyses have suggested that
miR-19b targets mRNA corresponding to the proangiogenic
proteins FGFR2 and MAPK1 (ERK2). In addition, previous
work showed that miR-19b blocks the cell cycle from the

S phase to the G(2)/M phase transition by controlling the
expression of cyclin Dlc [35].

5. Conclusion

In summary, the findings in the current study demonstrate
that a nonapoptotic/toxic concentration of polyphenol-rich
extract of Chilean propolis can modulate in vitro angiogenesis
in part by modulating HIFlee and ERK1/2 signaling pathway
and mechanism involving miR-19b. The effect showed by
EEP was not completely replicated by Pn, demonstrating the
importance of the combined action of multiple compounds
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FIGURE 5: (a) ERK1/2 phosphorylation and HIFl« stabilization by western blot. (b) Column bar of quantification of ERK1/2 phosphorylation
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mRNA. Bars represent mean + standard deviation. *P < 0.01; ** P < 0.001. C: control; V: vehicle; Pn: Pinocembrin.
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